Mechanisms of spectral tuning in the mouse green cone pigment.
نویسندگان
چکیده
Diversification of cone pigment spectral sensitivities during evolution is a prerequisite for the development of color vision. Previous studies have identified two naturally occurring mechanisms that produce variation among vertebrate pigments by red-shifting visual pigment absorbance: addition of hydroxyl groups to the putative chromophore binding pocket and binding of chloride to a putative extracellular loop. In this paper we describe the use of two blue-shifting mechanisms during the evolution of rodent long-wave cone pigments. The mouse green pigment belongs to the long-wave subfamily of cone pigments, but its absorption maximum is 508 nm, similar to that of the rhodopsin subfamily of visual pigments, but blue-shifted 44 nm relative to the human red pigment, its closest homologue. We show that acquisition of a hydroxyl group near the retinylidene Schiff base and loss of the chloride binding site mentioned above fully account for the observed blue shift. These data indicate that the chloride binding site is not a universal attribute of long-wave cone pigments as generally supposed, and that, depending upon location, hydroxyl groups can alter the environment of the chromophore to produce either red or blue shifts.
منابع مشابه
The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution.
Studies on marsupial color vision have been limited to very few species. There is evidence from behavioral, electroretinographic (ERG), and microspectrophotometric (MSP) measurements for the existence of both dichromatic and trichromatic color vision. No studies have yet investigated the molecular mechanisms of spectral tuning in the visual pigments of marsupials. Our study is the first to dete...
متن کاملTemperature effects on spectral properties of red and green rods in toad retina.
Temperature effects on spectral properties of the two types of rod photoreceptors in toad retina, "red" and "green" rods, were studied in the range 0-38 degrees C. Absorbance spectra of the visual pigments were recorded by single-cell microspectrophotometry (MSP) and spectral sensitivities of red rods were measured by electroretinogram (ERG) recording across the isolated retina. The red-rod vis...
متن کاملAvian visual pigments: characteristics, spectral tuning, and evolution.
Birds are highly visual animals with complex visual systems. In this article, we discuss the spectral characteristics and genetic mechanisms of the spectral tuning of avian visual pigments. The avian retina contains a single type of rod, four spectrally distinct types of single cone, and a single type of double cone photoreceptor. Only the single cones are thought to be involved in color discri...
متن کاملMechanisms of spectral tuning in blue cone visual pigments. Visible and raman spectroscopy of blue-shifted rhodopsin mutants.
Spectral tuning by visual pigments involves the modulation of the physical properties of the chromophore (11-cis-retinal) by amino acid side chains that compose the chromophore-binding pocket. We identified 12 amino acid residues in the human blue cone pigment that might induce the required green-to-blue opsin shift. The simultaneous substitution of nine of these sites in rhodopsin (M86L, G90S,...
متن کاملSpectral tuning of rhodopsin and visual cone pigments.
Retinal is the light-absorbing biochromophore responsible for the activation of vision pigments and light-driven ion pumps. Nature has evolved molecular tuning mechanisms that significantly shift the optical properties of the retinal pigments to enable their absorption of visible light. Using large-scale quantum chemical calculations at the density functional theory level combined with frozen d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 94 16 شماره
صفحات -
تاریخ انتشار 1997